U.S. ARMY CAREER


Wernher von Braun at a meeting of NACA's Special Committee on Space Technology
On June 20, 1945, the U.S. Secretary of State approved the transfer of von Braun and his specialists to America; however this was not announced to the public until October 1, 1945.[46] Von Braun was among those scientists for whom the U.S. Joint Intelligence Objectives Agency created false employment histories and expunged Nazi Party memberships and regime affiliations from the public record. Once “bleached” of their Nazism, the US Government granted the scientists security clearance to work in the United States.
The first seven technicians arrived in the United States at New Castle Army Air Field, just south of Wilmington, Delaware, on September 20, 1945. They were then flown to Boston and taken by boat to the Army Intelligence Service post at Fort Strong in Boston Harbor. Later, with the exception of von Braun, the men were transferred to Aberdeen Proving Ground in Maryland to sort out the Peenemünde documents, enabling the scientists to continue their rocketry experiments.
Finally, von Braun and his remaining Peenemünde staff (see List of German rocket scientists in the United States) were transferred to their new home at Fort Bliss, a large Army installation just north of El Paso. Von Braun would later write he found it hard to develop a "genuine emotional attachment" to his new surroundings.[47] His chief design engineer Walther Reidel became the subject of a December 1946 article "German Scientist Says American Cooking Tasteless; Dislikes Rubberized Chicken,' exposing the presence of von Braun's team in the country and drawing criticism from Albert Einstein and John Dingell.[47] Requests to improve their living conditions such as laying linoleum over their cracked wood flooring were rejected.[47] Von Braun remarked that "...at Peenemünde we had been coddled, here you were counting pennies..."[47] At the age of 26, von Braun had thousands of engineers who answered to him, but was now answering to "pimply" 26 year-old Major Jim Hamill who possessed an undergraduate degree in engineering.[47] His loyal Germans still addressed him as Herr Professor, but Hamill addressed him as Wernher and never bothered to respond to von Braun's request for more materials, and every proposal for new rocket ideas was dismissed.[47]

von Braun's badge at ABMA (1957)
While there, they trained military, industrial and university personnel in the intricacies of rockets and guided missiles. As part of the Hermes project, they helped refurbish, assemble, and launch a number of V-2s that had been shipped from Germany to the White Sands Proving Ground in New Mexico. They also continued to study the future potential of rockets for military and research applications. Since they were not permitted to leave Fort Bliss without military escort, von Braun and his colleagues began to refer to themselves only half-jokingly as "PoPs," "Prisoners of Peace."
In 1950, at the start of the Korean War, von Braun and his team were transferred to Huntsville, Alabama, his home for the next 20 years. Between 1950 and 1956, von Braun led the Army's rocket development team at Redstone Arsenal, resulting in the Redstone rocket, which was used for the first live nuclear ballistic missile tests conducted by the United States. This led to development of the first high-precision inertial guidance system on the Redstone rocket.[48]
As director of the Development Operations Division of the Army Ballistic Missile Agency (ABMA), von Braun, with his team, then developed the Jupiter-C, a modified Redstone rocket.[49] The Jupiter-C successfully launched the West's first satellite, Explorer 1, on January 31, 1958. This event signaled the birth of America's space program.
Despite the work on the Redstone rocket, the twelve years from 1945 to 1957 were probably some of the most frustrating for von Braun and his colleagues. In the Soviet UnionSergei Korolev and his team of scientists and engineers plowed ahead with several new rocket designs and the Sputnik program, while the American government was not very interested in von Braun's work or views and only embarked on a very modest rocket-building program. In the meantime, the press tended to dwell on von Braun's past as a member of the SS and the slave labor used to build his V-2 rockets.

Popular concepts for a human presence in space

Repeating the pattern he had established during his earlier career in Germany, von Braun – while directing military rocket development in the real world – continued to entertain his engineer-scientist's dream of a future world in which rockets would be used for space exploration. However, instead of risking being sacked, he now was increasingly in a position to popularize these ideas. The May 14, 1950 headline of The Huntsville Times ("Dr. von Braun Says Rocket Flights Possible to Moon") might have marked the beginning of these efforts. These disclosures rode a moonflight publicity wave that was created by the two 1950 U.S. science fiction films, Destination Moon and Rocketship X-M.
In 1952, von Braun first published his concept of a manned space station in a Collier's Weekly magazine series of articles entitled "Man Will Conquer Space Soon!". These articles were illustrated by the space artist Chesley Bonestell and were influential in spreading his ideas. Frequently von Braun worked with fellow German-born space advocate and science writer Willy Ley to publish his concepts, which, unsurprisingly, were heavy on the engineering side and anticipated many technical aspects of space flight that later became reality.
The space station (to be constructed using rockets with recoverable and reusable ascent stages) would be a toroid structure, with a diameter of 250 feet (76 m); this built on the concept of a rotating wheel-shaped station introduced in 1929 by Herman Potočnik in his book The Problem of Space Travel – The Rocket Motor. The space station would spin around a central docking nave to provide artificial gravity, and would be assembled in a 1,075 miles (1,730 km) two-hour, high-inclination Earth orbit allowing observation of essentially every point on earth on at least a daily basis. The ultimate purpose of the space station would be to provide an assembly platform for manned lunar expeditions. More than a decade later, the movie version of 2001: A Space Odyssey would draw heavily on the design concept in its visualization of an orbital space station.
Von Braun envisaged these expeditions as very large-scale undertakings, with a total of 50 astronauts travelling in three huge spacecraft (two for crew, one primarily for cargo), each 49 m (160.76 ft) long and 33 m (108.27 ft) in diameter and driven by a rectangular array of 30 rocket propulsion engines.[50] Upon arrival, astronauts would establish a permanent lunar base in the Sinus Roris region by using the emptied cargo holds of their craft as shelters, and would explore their surroundings for eight weeks. This would include a 400 km (249 mi) expedition in pressurized rovers to the crater Harpalus and the Mare Imbrium foothills.

Walt Disney and von Braun, seen in 1954 holding a model of his passenger ship, collaborated on a series of three educational films.
At this time von Braun also worked out preliminary concepts for a manned mission to Mars that used the space station as a staging point. His initial plans, published in The Mars Project (1952), had envisaged a fleet of ten spacecraft (each with a mass of 3,720 metric tons), three of them unmanned and each carrying one 200-ton winged lander[51] in addition to cargo, and nine crew vehicles transporting a total of 70 astronauts. Gigantic as this mission plan was, its engineering and astronautical parameters were thoroughly calculated. A later project was much more modest, using only one purely orbital cargo ship and one crewed craft. In each case, the expedition would use minimum-energy Hohmann transfer orbits for its trips to Mars and back to Earth.
Before technically formalizing his thoughts on human spaceflight to Mars, von Braun had written a science fiction novel on the subject, set in the year 1980. However, the manuscript was rejected by no less than 18 publishers.[52] Von Braun later published small portions of this opus in magazines, to illustrate selected aspects of his Mars project popularizations. The complete manuscript, titled Project MARS: A Technical Tale, did not appear as a printed book until December 2006.[53]
In the hope that its involvement would bring about greater public interest in the future of the space program, von Braun also began working with Walt Disney and the Disney studios as a technical director, initially for three television films about space exploration. The initial broadcast devoted to space exploration was Man in Space, which first went on air on March 9, 1955, drawing 42 million viewers and unofficially the second-highest rated television show in American history.[47][54]
Later (in 1959) von Braun published a short booklet[55] – condensed from episodes that had appeared in This Week Magazine before—describing his updated concept of the first manned lunar landing. The scenario included only a single and relatively small spacecraft—a winged lander with a crew of only two experienced pilots who had already circumnavigated the moon on an earlier mission. The brute-force direct ascent flight schedule used a rocket design with five sequential stages, loosely based on the Nova designs that were under discussion at this time. After a night launch from a Pacific island the first three stages would bring the spacecraft (with the two remaining upper stages attached) to terrestrial escape velocity, with each burn creating an acceleration of 8–9 times standard gravity. Residual propellant in the third stage would be used for the deceleration intended to commence only a few hundred kilometers above the landing site in a crater near the lunar north pole. The fourth stage provided acceleration to lunar escape velocity while the fifth stage would be responsible for a deceleration during return to the Earth to a residual speed that allows aerocapture of the spacecraft ending in a runway landing, much in the way of the Space Shuttle. One remarkable feature of this technical tale is that the engineer Wernher von Braun anticipated a medical phenomenon that would become apparent only years later: being a veteran astronaut with no history of serious adverse reactions to weightlessness offers no protection against becoming unexpectedly and violently spacesick.

Von Braun withPresident Kennedy at Redstone Arsenal in 1963

Von Braun with the F-1engines of the Saturn V first stage at the U.S. Space and Rocket Center

Still with his rocketmodels, von Braun is pictured in his new office at NASA headquarters in 1970

Concepts for orbital warfare

Von Braun developed and published his space station concept during the very "coldest" time of the Cold War, when the U.S. government for which he worked put the containment of the Soviet Union above everything else. The fact that his space station – if armed with missiles that could be easily adapted from those already available at this time – would give the United States space superiority in both orbital and orbit-to-ground warfare did not escape him. Although von Braun took care to qualify such military applications as "particularly dreadful" in his popular writings, he elaborated on them in several of his books and articles. This much less peaceful aspect of von Braun's "drive for space" has recently been reviewed by Michael J. Neufeld from the Space History Division of the National Air and Space Museum in Washington.[56]

NASA career


Werner von Braun during Apollo 11 launch
The U.S. Navy had been tasked with building a rocket to lift satellites into orbit, but the resulting 
Vanguard rocket launch system was unreliable. In 1957, with the launch of Sputnik 1, there was a growing belief within the United States that America lagged behind the Soviet Union in the emerging Space Race. American authorities then chose to utilize von Braun and his German team's experience with missiles to create an orbital launch vehicle, Wernher von Braun had originally proposed in 1954 but had been denied.[47]
NASA was established by law on July 29, 1958. One day later, the 50th Redstone rocket was successfully launched from Johnston Atoll in the south Pacific as part of Operation Hardtack I. Two years later, NASA opened the Marshall Space Flight Center at Redstone Arsenal in Huntsville, and the ABMA development team led by von Braun was transferred to NASA. In a face-to-face meeting with Herb York at the Pentagon, von Braun made it clear he would go to NASA only if development of the Saturn was allowed to continue.[57] Presiding from July 1960 to February 1970, von Braun became the center's first Director.
Von Braun's early years at NASA were not without some disappointments. One of those was the "infamous four inch flight" during which the first unmanned Mercury-Redstone rocket only rose a few inches before settling back onto the launch pad. It was later determined that the launch failure was the result of a "power plug with one prong shorter than the other because a worker filed it to make it fit." Because of the difference in the length of one prong the launch system detected the difference in the power disconnection as a "cut-off signal to the engine." The system stopped the launch, and the incident created a "nadir of morale in Project Mercury."

Charles W. Mathews, von Braun, George Mueller, and Lt. Gen.Samuel C. Phillips in the Launch Control Center following the successfulApollo 11 liftoff on July 16, 1969
The Marshall Center's first major program was the development of Saturn rockets to carry heavy payloads into and beyond Earth orbit. From this, the Apollo program for manned moon flights was developed. Wernher von Braun initially pushed for a flight engineering concept that called for an Earth orbit rendezvous technique (the approach he had argued for building his space station), but in 1962 he converted to the lunar orbit rendezvous concept that was subsequently realized.[58] During Apollo, he worked closely with former Peenemünde teammate, Kurt H. Debus, the first director of the Kennedy Space Center. His dream to help mankind set foot on the Moon became a reality on July 16, 1969 when a Marshall-developed Saturn V rocket launched the crew of Apollo 11 on its historic eight-day mission. Over the course of the program, Saturn V rockets enabled six teams of astronauts to reach the surface of the Moon.
During the late 1960s, von Braun was instrumental in the development of the U.S. Space & Rocket Center in Huntsville. The desk from which he guided America's entry in the Space Race remains on display there.
During the local summer of 1966–67, von Braun participated in a field trip to Antarctica, organized for him and several other members of top NASA management.[59] The goal of the field trip was to determine whether the experience gained by US scientific and technological community during the exploration of Antarctic wastelands would be useful for the manned exploration of space. Von Braun was mainly interested in management of the scientific effort on Antarctic research stations, logistics, habitation and life support, and in using the barren Antarctic terrain like the glacial dry valleys to test the equipment that one day would be used to look for signs of life on Mars and other worlds.
In an internal memo dated January 16, 1969,[60] von Braun had confirmed to his staff that he would stay on as a center director at Huntsville to head the Apollo Applications Program. A few months later, on occasion of the first moon-landing, he publicly expressed his optimism that the Saturn V carrier system would continue to be developed, advocating manned missions to Mars in the 1980s.[61]
However, on March 1, 1970, von Braun and his family relocated to Washington, D.C., when he was assigned the post of NASA's Deputy Associate Administrator for Planning at NASA Headquarters. After a series of conflicts associated with the truncation of the Apollo program, and facing severe budget constraints, von Braun retired from NASA on May 26, 1972. Not only had it become evident by this time that his and NASA's visions for future U.S. space flight projects were incompatible; it was perhaps even more frustrating for him to see popular support for a continued presence of man in space wane dramatically once the goal to reach the moon had been accomplished.

Von Braun and William R. Lucas, the first and third Marshall Space Flight Center directors, viewing a Spacelabmodel in 1974
Dr. von Braun also developed the idea of a Space Camp that would train children in fields of science and space technologies as well as help their mental development much the same way sports camps aim at improving physical development. [16]:354–355

Career after NASA

After leaving NASA, von Braun became Vice President for Engineering and Development at the aerospace company, Fairchild Industries in Germantown, Maryland on July 1, 1972.
In 1973 a routine health check revealed kidney cancer, which during the following years could not be controlled by surgery.[62] Von Braun continued his work to the extent possible, which included accepting invitations to speak at colleges and universities as he was eager to cultivate interest in human spaceflight and rocketry, particularly with students and a new generation of engineers.
Von Braun helped establish and promote the National Space Institute, a precursor of the present-day National Space Society, in 1975, and became its first president and chairman. In 1976, he became scientific consultant to Lutz Kayser, the CEO of OTRAG, and a member of the Daimler-Benz board of directors. However, his deteriorating health forced him to retire from Fairchild on December 31, 1976. 
When the 1975 National Medal of Science was awarded to him in early 1977 he was hospitalized, and unable to attend the White House ceremony.

Engineering philosophy

Von Braun's insistence on further tests after Mercury-Redstone 2 flew higher than planned has been identified as contributing to the Soviet Union's success in launching the first human in space.[63] The Mercury-Redstone BD flight was successful, but took up the launch slot that could have put Alan Shepard into space three weeks ahead of Yuri Gagarin. His Soviet counterpart Sergei Korolev insisted on two successful flights with dogs before risking Gagarin's life on a manned attempt. The second test flight took place one day after the Mercury-Redstone BD mission.[16]:
Von Braun took a very conservative approach to engineering, designing with ample safety factors and redundant structure. This became a point of contention with other engineers, who struggled to keep vehicle weight down so that payload could be maximized. Krafft Ehricke likened von Braun's approach to building the Brooklyn Bridge.[64]:208 
Many at NASA headquarters jokingly referred to Marshall as the "Chicago Bridge and Iron Works," but acknowledged that the designs worked.[65] The conservative approach paid off when a fifth engine was added to the Saturn C-4, producing the Saturn V. The C-4 design had a large crossbeam that could easily absorb the thrust of an additional engine.[16]:371...OP+